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Long-Range Molecular Interaction Coefficients 

Computed from Frost-Model Wave Functions 
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The average long-range interaction energy between two molecules can be written as 
an inverse asymptotic series in the intermolecular separation distance R. Using Frost- 
model wave functions, the dispersion coefficients of  the first three (R - 6  R - s ,  R - l ~  
terms in the series are obtained. Coefficients of  three- and four-body non-additive 
interaction energies are also calculated and the form of  the dispersion interaction 
when retardation effects are included is examined. 
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1. Introduction 

The long-range temperature-independent interaction energy between two neutral molecules, 
when averaged over all orientations, may be written as an asymptotic series [1] : 

C6 C8 C10 
2xE = - R--g- - R----8 - R lO . . . .  (1) 

where R is the intermolecular separation distance and C6, C8, C I O  �9 �9 �9 are constants depend- 
ing on the particular molecules which are interacting. The important contributions to 
arise from applying second-order perturbation theory and each of  the terms in (1) can be 
subdivided into two parts one of  which - the induction part - depends on the moments 
and polarizabilities of  the molecules. This is usually very much smaller than the second 
part which is the London dispersion interaction. In this paper, we shall ignore the induc- 
tion part and assume that the coefficients C6, Ca, Clo can be adequately estimated 
from the dispersion part alone. 

The most convenient expression for C 6 relates it to the average frequency-dependent 
polarizabilities at imaginary frequencies, aA(iw) and an(ice ) of  the two interacting mole- 
cules [1, 2]. The result is 

3 eo 

C 6 = -- f ua(i~o)aB(iw) dco (2) 
7r 

o 

Thus if reasonable estimates of  a A and aB can be found, C 6 can be evaluated. Actually it 
seems to be the case that to obtain really accurate values of  C6 it is best to use experimen- 
tal information to determine ~a  and aB, for example from measurements of  refractive 
indices [3]. However, for some large molecules not enough experimental data is available 
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for this to be done and, in any case, it is desirable that purely theoretical estimates of  C6 
should be attempted. 

Recently we have shown how the frequency-dependent polarizability of  a molecule can 
be estimated if its Frost-model wave function is known [4]. Although, due to deficiencies 
o f  the Frost model the resulting expression for the polarizability is far too simple, never- 
theless it seems worthwhile investigating whether it can be used to give reasonable values 
of the C6 coefficients. In the first part of  this paper we show that, in the main, satis- 
factory numerical values can be found in this way. A preliminary account of  these 
results has been given elsewhere [5].  

As well as giving an expression for C6, it turns out to be a simple matter to use Frost- 
model perturbation theory to find the higher coefficients Cs and C10. Although they are 
not so important as the C6 coefficient, it is useful to have estimates of  their values in 
order to discuss the convergence properties of  the series for AE. 

Previous calculations of  dispersion coefficients for molecular interactions have usually 
been based on approximate methods such as those of  London [6] or Slater and 
Kirkwood [7]. The Frost-model results can be used to analyse these methods and to 
investigate their accuracy. In the main we find that none of  the approximate methods is 
uniformly successful although empirical values based on a simple one-term fitting of  
refractive-index data are usually very satisfactory. 

As already explained, Eq. (1) is obtained using second-order perturbation theory. Extra 
terms arise when the perturbation theory is carried through higher order [8, 9].  For 
interactions between pairs of  molecules these terms are not so very important but for 
interactions between three or more molecules they lead to non-additive forces. The lead- 
ing term in the long-range non-additive interaction between the n molecules A1, A2 . . . .  An 
depends on the coefficient [8] : 

3'n = 3'(A1, A2. �9 �9 An) = --3 f ~ A , ( i c o ) a A ~ ( i c o ) .  . . 0~An(i60 )dco 
7r o 

(3) 

Using the Frost-model expression for the polarizabilities we can, in principle, evaluate 3' 
although it turns out to be sufficiently accurate and much more convenient to employ 

approximations to t h e  aAi(ico). 

Although 2xE in Eq. (1) is usually described as the long-range interaction energy, the for- 
mula is not valid when R becomes very large. For very long-range interactions relativistic 
retardation effects have to be taken into account as was first shown in the famous work 
of  Casimir and Polder [ 10]. In the final section of  this paper we examine the behaviour of  
the more general formula in the context of  the Frost model. 

2. Theory 

The Frost-model [ 11 ] wave function for a 2n-electron molecule consists of  a Slater deter- 
minant �9 of  n doubly occupied floating spherical Gaussian orbitals (FSGO's) (Gi} i.e. 

q /=  det (G lOnG 1 (3 . . . GnaGn[3) (4) 
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where 

ai(r)  = exp - lcoi [ r - Ril 2 (5) 

The exponents {co/} and the positions of the centres {Ri} of the Gaussians are found by 
using the variational principle. Thus all the parameters are obtained in an ab ini t io  fashion 
and are not determined empirically. 

In a previous paper [4], by setting up a point-charge model and using a classical approach 
we obtained the following expression for the frequency-dependent molecular polarizability: 

~(co) = co 2 - ca 2 (6) 
i=l 

Not surprisingly the same result can be obtained quantum-mechanically if symmetry- 
adapted double perturbation theory [12] is applied as is shown in the appendix. 

Substituting Eq. (6) into Eq. (2) gives the result: 

n A  nB 

C 6 = 6 co -A co .B rco .A + c0~) (7) 
i = i  = 

in an obvious notation. Expressions can also be derived for C8 and Clo and they are 

" ( 1 1 / 
Ca = 45 ...~ co i co; oo f f ( aw  A + co] ) coB(oo A + 26o B 

i=1 j=l * 

and 
nA nB n A nB ( 
~ 1 ~ { 1 

a 2 B 2 A co]B) § 4 2 0  C10 : 315 co. co. ) co i + coA(wB)3Uo/A + 3W B) 
i : l  ]:1 ( I ) ( 1 ( i=1 ]:1 

1 / 
+ (9) 

+ 

These expressions are very similar to those found from the oscillator model [1] (i.e. from 
the Drude theory). This follows because we take only the leading term of the symmetry- 
adapted perturbation theory which amounts to replacing the molecular Hamiltonian by 
a sum of one-electron harmonic oscillator Hamiltonians. For many harmonic oscillator 
properties of which the frequency dependent polarizability is one, classical and quantum 
theory give identical results. Thus Eq. (6) and, hence the dispersion coefficients deduced 
from it, have the same form as in the Drude theory. Where Eq. (6) differs from the Drude 
theory is that the parameters {co/} are obtained from the quantum-mechanical variational 
principle rather than found empirically. Moreover, while there is no way to correct the 
Drude theory, even in principle, Eq. (6) is to be regarded as the leading term in a pertur- 
bation expansion which, if sufficient terms could be computed, would give the exact 
result. 

3. Values of the Dispersion Coefficients 

In Table 1 we list values of C6, C8, C1o to three significant figure accuracy as found from 
Eqs. (7)-(9) for a number of different pairs of interacting species. The wave functions used 
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were taken from Refs. [11] except HzO which was taken from Ref. [4]. The results for 
C 6 are compared with the best estimates available in the literature [3, 13]. The latter are 
found by employing considerable experimental information to determine empirical 
formulae for aA(ico) and ~B(iCo) from which C 6 can be obtained by means of Eq. (2). 
The error in these best estimates is thought to be less than 5% and in some cases consider- 
ably less. It is clear from the table that in the case of molecules the results of this paper are 
in very satisfactory agreement with these best estimates. Water is an exception, our results 
being about 80% of the best value. This could have been anticipated in view of the low 
values for other properties of  water found from the Frost model [4, 12]. Even so the 
Frost-model value for C6 is rather better than values found by more elaborate calculations 
(C a = 60.2 a.u. [14] ; C6 = 66.7 a.u. [16] ) and by semi-empirical methods (see, for example, 
the final paragraph of Ref. [16] ). Although there seems to be no reliable estimate for the 
C 6 dispersion coefficient between two ammonia molecules with which to compare our 
value we expect ammonia to follow the same pattern as water and so our result will 
probably be too low. 

The values of the dispersion coefficients for helium and for helium interacting with mole- 
cules are much too low. This is almost entirely due to the poor Frost-model representation 
of a(co) for the helium atom. In order to obtain better estimates of  the He-H2 and He-CH 4 
interactions, we can take an empirical formula a(6o) = 2/(1.272 - 602) for helium which 
gives the correct value for C6 (He-He). When this is used with the Frost-model expressions 
for H2 and CH4 the results in brackets in Table 1 are obtained. These are in good agreement 
with the best estimates. 

Apart from methane, there are also no really satisfactory best estimates of the first disper- 
sion coefficients between hydrocarbons although there are some calculated and semi- 
empirical values available in the literature. For example, in the case of ethane, Amos and 
Crispin [14] have recently obtained C 6 = 443 a.u. in good agreement with the result of this 
paper but older semi-empirical estimates are about 25% higher [17]. In their classic paper, 
Haugh and Hirschfelder [18] found an average value of C 6 = 303 a.u. for ethylene and 
C6 = 363 a.u. for acetylene. Their ethylene result is in reasonable agreement with ours but 
their acetylene value is about 50% larger. 

Also in Table 1 we give a set of semi-empirical values of  C6 which we have calculated using 
up-to-date values of polarizabilities, susceptibilities and ionization potentials in various 
approximate formulae. As a rule the Frost-model results lie between the semi-empirical 
ones and, on the whole, are much more reliable. 

Turning now to the higher-order terms, we find that C8 ~ 15C6 and Clo ~ 186"8 although 
the ratios for ammonia are rather smaller and for water are much smaller. (Following our 
earlier remarks concerning the C 6 coefficients for these two molecules we believe that 
their C 8 and Cm coefficients should also be scaled upwards.) The ratios 15 and 18 are 
not dissimilar to those found for atoms [19] although they are larger than those found 
in the oscillator model [20] and if we accept them as typical of molecular interactions 
it follows that the dispersion energy takes the form: 

C 6 ( 15 270 6 } 
A E = - ~ - g  1 + ~ - - ~ + - ~ - - + O ( R -  ) 

Consequently for values of  R between 10 a.u. and 20 a.u. it is a poor approximation to 
take only the first, -C6/R 6, term in z ~  and at least the second, -Cs/R s, ought to be 
included. For R > 20 a.u. it is sufficient to use the first term only. 
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4. Approximate  and Empirical Formulae 

For all the molecules considered here, the exponents (wi} fall into two classes. Those 
associated with inner-shell orbitals on C, N and O atoms are relatively large and so con- 
tribute little to the summations in Eqs. (6)-(9).  The remaining exponents are from bond 
or lone-pair orbitals and are much smaller. Moreover their numerical values tend to be 
very similar. Thus it is a reasonable approximat ion to replace the bond and lone-pair orbital 
exponents by an average value ~o A for each molecule and to neglect the inner-shell orbital 
exponents.  As a consequence the equations o f  the previous section take simpler forms; for 
example C 6 becomes: 

3 NAN B 
C6 = 2 (~A('~B(COA + ("~B) (10) 

where N A is the number of  valence electrons (i.e. the total  number minus the number in 
inner shells) in molecule A. 

There are a number of  ways in which the average exponents could be chosen from the 
(wi}. The most obvious is to take ~ A  = (3N~/4C6) 1/3 where C 6 has the Frost-model  
value. This choice ensures that  for interactions between like molecules, the simplified 
(Eq. (10)) and exact (Eq. (7)) Frost-model  expressions give identical results. Taking the 
~ a  values obtained in this way, it seems also to be the case that Eqs. (10) and (7) lead to 
nearly identical results even for interactions between different molecules; in addition, the 
same choice of  c5 A when used in the approximate  formulae (analogous to Eq. (10)) for 

C8 and C10 give results in very good agreement with the exact Frost-model  results obtained 
from Eqs. (8) and (9). The values of  these 9 1  are given in Table 2. Frost-model  values for 
various molecular properties can also be used to determine ~ A ,  or, indeed, a straight- 
forward average of  the {co/} ignoring inner shell exponents can be taken. In all cases the 
results are almost identical to the Frost-model  values given in Table 2. 

It is immediately obvious from Table 2 that  the c~ A for the hydrocarbons have almost 
exactly the same value. This suggests that  good estimates of  the dispersion coefficients 
for interactions between hydrocarbons can be obtained by assuming that for every hydro- 

Table 2. Values of the average exponents ~SA, in atomic units 

Molecule Frost Model S-K a K-M b L c Average d RI e From C 6 f 

H2 0.64 0.60 0.60 0.61 0.60 0.58 0.63 
H20 1.10 0.91 0.84 1.13 0.96 1.02 1.02 
NH3 0.81 0.73 0.68 0.91 0.77 0.82 - 
CH4 0.70 0.68 0.71 0.77 0.72 0.69 0.69 
C2H 6 0.70 0.68 0.66 0.80 0.71 0.70 - 
C2H 4 0.70 0.65 0.73 0.77 0.72 0.71 - 
C2H2 0.69 0.65 0.74 0.76 0.72 0.73 - 

a Slater-Kirkwood approximation: from Eq. (13). 
b Kirkwood-MuUer approximation: from Eq. (15). 
c London approximation: from Eq. (18). 
d Average of three previous columns. 

~e From refractive index data of Ref. [22] using Eqs. (16) and (17). 
f From "best estimates" of C6, quoted in Tab. 1, and Eq. (19). 



Long-Range Molecular Interaction Coefficients 253 

carbon r = 0.70 a.u. With this approximation the coefficients will depend only on the 
number of valence electrons in each hydrocarbon. The results are: 

C 6 = 2.19NANB 

Ca = 31.2NANB (11) 

Clo = 547NANB 

in atomic units. 

Instead of using the Frost model to determine ~A, it can be chosen empirically using 
experimental values for various molecular properties. One such procedure is to approximate 
Eq. (6) by 

NA (12) 
a ( c o )  = o 5 2  _ 002 

and take the limit as co -+ 0, giving the static polarizability aA(0) as 

- N A  (13) 
 A(0) - 

The values of ~A, which in conjunction with Eq. (13) would give static polarizabilities in 
agreement with experiment, are listed in Table 2. Alternatively, since the formula for the 
molecular susceptibility XA can be approximated by 

NA (14) 
XA - 4C~A 

the experimental values of XA can be used to obtain the c~ A. However, the ~A found in 
this way are not very satisfactory and it is much better to combine (13) and (14) and 
estimate the average exponent by 

4XAO~A 

Eqs. (13) and (15) are interesting because the use of the empirical ~A determined from 
them to find C 6 via Eq. (10) is equivalent to the well-known approximations due to Slater 
and Kirkwood [7] (Eq. (13)) and to Kirkwood and Muller [21] (Eq. (15) although this 
gives the Kirkwood-Muller approximation only for the dispersion coefficient between like 
molecules). It can be seen from Table 2 that, except in a few cases, the c~ A obtained from 
Eqs. (13) and ( t5)  do not agree particularly well either with each other or with the Frost- 
model values. 

We have pointed out earlier that the best estimates of C6 are obtained by using refractive 
index data to fit an empirical formula for CA(co ). The simplest of such formulae is a one- 
term function 

CA 
aA(co) = ~ _ co2 (16) 

where CA and ~A are empirical parameters which can be obtained from tables of refrac- 
tive index measurements [22]. Eq. (16) is not quite the same as Eq. (12) since it usually 
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turns out that CA is less than N A. However, for the interaction of like molecules, the use 
of (16) to find C 6 will give the same result as the use of (12) with r A chosen to be 

O')A = ~'~A (N A/C A) 2/3 ( l  7) 

Values of r A found from this equation are given in Table 2 and it is pleasing to note that 
they are generally in reasonable agreement with the Frost-model values. 

Perhaps the best known of all approximate methods for finding C6 is due to London [6]. 
This can be obtained from (16) by noting that ~A is roughly the same as the ionization 
potential I A for many atoms and molecules. Setting ~A = 1A, therefore, and taking the 
limit as co -+ 0 of Eq. (16) so that aA(0 ) = CA/I~,  enables Eq. (17) to be rewritten to give 
the average exponent corresponding to the London approximation, viz. 

62 A = IA 1/3 (N A/a A (0)) 2/3 (18) 

The results of using Eq. (18) are in the fourth column of Table 2. 

Table 2 now contains five sets of average exponents. Four are empirical of which one - the 
set found from Eq. (17) - is a special case since it is the first approximation in the pro- 
cedure which leads to the best estimates of C 6 . The remaining three correspond to the 
most used methods for finding approximate values of C 6 and we had hoped, by relating 
them to making particular choices of the r and by considering the values of the ~A thus 
obtained, to be able to decide unambiguously which of the three it is best to use. However, 
it is not easy to do this on the basis of the results in Table 2 since the approximate values 
fall into no easily recognizable pattern. On the whole, the Slater-Kirkwood, Kirkwood- 
Muller and London approximations seem to be less reliable individually than the ab initio 
procedure based on the Frost-model. However, perhaps fortuitously due to cancellation 
of errors, the average of the three semi-empirical values of r is in much more satisfactory 
agreement with both the Frost-model values and those obtained from refractive index data. 
We are certainly of the opinion that more reliable sets of C 6 values can be obtained by this 
type of averaging than by using any single one of the empirical methods. 

Finally, we note that where good estimates rather than Frost-model values of C 6 are 
available then, of course, ~A can be chosen to satisfy 

if)3 A = 3 N I / 4 C  6 (19) 

and then used to find C8 and Clo. The best estimates o fC  6 quoted in Table 1 for H2-H2, 
H20-H20, CH4-CH4 interactions have been used to find (5 A for these molecules from Eq. 
(19) and the results can be seen in Table 2. Except for the hydrogen molecule they are in 
good agreement with values found from the refractive index data using Eq. (17). For He 
and CH4 they are in good agreement with the Frost-model 65 A but for water there is a 
significant difference. 

5. Non-additive Interaction Energies 

In general, when n molecules A1, A2 . . . .  A n interact, the non-additive n-body interaction 
energy can be written in the form [8] : 

~ n  = O(A1 . . . .  An)Tn (20) 

Where 0 depends on the distances between the molecules,and their configurations relative 
to each other and 7n depends on the type of molecules which interact. On averaging over 
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all orientations of  the interacting molecules, 3'n can be expressed in terms of  the frequency- 
dependent polarizabilities of  the molecules by means of  Eq. (3). 

The configuration and distance dependent term | varies as the inverse 3nth power of  the 
separation distances. For example, when n = 3, 

0 =R13R23R33(3 cos 0 1 COS 0 2 cos 0 3 + 1) (21) 

where the molecules are placed at the vertices of  a triangle with angles 01,02,  03 and sides 
R 1, R 2, R 3. The dependence on intermolecular separations means that AE n decreases 
rapidly as n increases so that it usually suffices to consider three- and four-body energies. 

Using the Frost-model expressions for a(ico) it is possible to express 73 and 3'4 in terms of  
the orbital exponents. The formula for 3'3 is given in Ref. [5] and that for 3'4 (and the 
higher coefficients) has the same form as is found in the oscillator model (cf. Ref. [23] 
Sect. 3.3). However, these formulae are fairly complicated and it turns out to be accurate 
enough to simplify them by introducing average exponents. 

We then find: 

3NANBNc 65A + ~-)B + 65C 
3,3(A, B, C) - 

2 C~ACOBCSC(65A + 65B)(65B + 65C)(C5C + CSA) (22) 

~/4(A, B, C, D) = 
3NANBNcND 

2 (65A COBC'Dc65D(('-'JA + ~B)  �9 �9 �9 (65C + (~D)} -1X 

•  + 65~ + ~ g  + 65~)(65A + 65B + 65C + ~ D )  -- 65~ -- 

65~ -- 65~ -- 65~ + 265A65B65C~D• ( ~ 2  + 65~1 + 65C ~ + 

+ (.~D1)} (23)  

For interactions between like molecules these formulae simplify considerably to become: 

9 N I  
3,3(A, A, A) - 1665 s (24) 

15 N 4 
')'4(A, A, A, A) - 32 65~ (25) 

Values of 3'3 and 3'4 computed from Eqs. (24) and (25) for a number of  molecules are given 

in Table 3. 

Table 3.73 and 74 in atomic units for 
interactions between like molecules 

Molecule 73 x 10 -2 ')'4 x 10 -3 

Ha 0.42 0.171 
H20 1.79 0.985 
NH3 8.26 8.39 
CH 4 17.1 23.3 
C2H6 91.8 219 
C2H4 57.8 118 
C2H4 36.0 63 
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Using the formulae in the previous section relating (~A to experimentally measurable 
quantities, it is possible to obtain many approximations to Eqs. (25) and (26). However it 
appears that the best of  these use the dispersion coefficient C 6 - through Eq. (19) - either 
alone or in conjunction with aA(0) via Eq. (13). The corresponding expressions are: 

73(A, A, A) = (~)l/3NA1/3CS6/3 (26) 

74(A, A, A, A) = 5r3-~-4/3 . r - 2 / 3 , , ' ~ 7 / 3  
~1.~ ' )  I V A  ~'-'6 (27) 

and 

73(A, A, A) = 3 0 Z A ( 0 ) C 6  (28) 

74(A, A, A, A) = s a~(0)C6 (29) 

At the moment there seems no way of  testing these approximate formulae in the case of  
molecular interactions. However, for rare gas atoms, Eq. (28), which has previously been 
derived by Kihara [9],  has been shown to be surprisingly accurate [24]. Unfortunately it 
is not possible to test Eq. (26) in a similar way since N A is defined only for first-row atoms. 

6. Retardation Effects 

When radiative corrections are taken into account the leading term in the interaction energy 
is more complicated than the simple - C 6 / R  6 dispersion term of Eq. (1) (see, for example, 
[1], [10] ). The correct expression is 

1 
AE - - [3Io + 6oRIx + 5o2R212 + 2o3R313 + o4R414] (30) 

lrR 6 

where we have used o for the fine-structure constant (o = 1/137) and I n is the integral 

e~ 

In = f cOnaA(iCO)aB(iW) exp(-2oRco)  dco 
0 

(31) 

For very large R an asymptotic expansion of  s can be obtained. This is easy to do since 
the integrals I n are in precisely the form to which Watson's lemma can be applied (see, 
for example, chapter 17 of  Ref. [25] ). I f  we write 

~A(iCO)~B(iCo) = a 0 -- a2co 2 + 84034 - - . . .  (32) 

for small w, then applying the lemma gives the asymptotic formula: 

23 129 639 
2xE ~ - 4no aoR-7  + a R-11 + . . .  (33) _ _  87ro 3 a2 R - 9  41ro6 4 

a result which has been obtained by many authors (for references, see [1] ). To find the 
coefficients ao, a2, a4 . �9 �9 we expand aA(ico), aB(ico) sepfirately. For example: 

0~A(iCo) = ~ SA(-2k- 2 ) ( - 1 ) k ~  2k 
k = 0  

(34) 
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Table 4. Frost-model values of the sums S(-2), S (4 ) ,  
S(-6) in atomic units 

Molecule S(-2) a S(-4) S(-6) 

H2 4.93 12.15 29.95 
H20 6.66 5.55 4.63 
NH3 12.28 18.89 29.35 
CH4 16.48 33.91 69.80 
C2H6 28.44 57.83' 117.81 
C2H4 24.90 53.25 117.48 
CzH2 21.35 47.72 110.73 

a Note that S(-2) = a(0) and S(0) = 2n, the number of 
electrons so that the Thomas-Reiche-Kuhn sum rule is 
satisfied by the Frost-model expression. 

where the SA(--2k -- 2) are oscillator-strength sums. The first four coefficients are given 

by 

a o = SA(--2)SB(--2 ) 

a2 = SA(--2)SB(--4) + SA(--4)SB(--2) 

a 4 = SA(--2)SB(--6 ) + SA(--6)SB(--2 ) + SA(--4)SB(--4 ) (35) 

These results are quite general. 

If we use the Frost model to estimate the sums we find 

nA 
S A ( - 2 k  - 2) = 2 ~ (.O/"-2(k+l) (36) 

i=1 

and values of the first few of the sums for a number of molecules are given in Table 4. 
Note that for the hydrocarbons each successive term is approximately double the previous 
one. This happens because SA can be approximated by NACSA 2(k+1) SO that S A ( - 2 k  - 2 )  

~A2SA(--2k). Since, for the hydrocarbons, c5 A ~ 0.7 we have S A ( - 2 k  - 2) ~ 2SA( -2k  ). 
Of course, this result is valid only within the Frost model and it appears to underestimate 
the values of the higher sums 1 . 

In spite of this, we can get at least a rough estimate of the values of a0, a2, a 4 by using the 

results from Table 4. For example, using the estimate SA(--2k -- 2) ~ 2SA( -2k  ) for hydro- 
carbons we find that Eq. (33) is approximately 

27 
2xE ,~ - 4zro a~ [1 - 2" 10SR-Z + 1011R-4 + O(R -6)] (37) 

which should be a good approximation to Eq. (30) forR > 1500 a.u. 

It is much less easy to obtain a useful expansion of 2xE for relatively small values of R. 
However, by seeking a Taylor series in oR we find 

ZXE = - R - 6  {C 6 _ 02R2d4 + 0(o3R3)} (38) 

1 For H2, Starkschall and Gordon [3] find S(-4) = 19.91 +- 0.35 a.u. and S(-6) = 80.4 +- 2.7 a.u. so 
that the Frost-model value for S(-6) is less than 40% of the accurate value. 
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Table 5. Frost-model values of d 4 

in atomic units 

Molecule d 4 

H 2 1.57 
H20 15.07 
NH 3 20.40 
CH 4 23.84 
C2H 6 72.92 
C2H 4 54.18 
C2H2 38.34 

where C 6 is the usual dispersion coefficient and 

1 yco2oz A d 4 = -- (i60)0~B(i60) dco (39) 
7~ 

0 

Using the Frost-model formula for the polarizabilities it follows that 

nA nB 

d4 = 2 (coA + coB) (40) 
i=l ]=l 

Though an averaging process has proved successful for treating C 6 and 7n it must be noted 
that for d4 individual terms are of the order I/wi and it is not nearly as good an approxi- 
mation to neglect inner shell contributions which are no longer entirely negligible. There- 
fore, for the interaction of like molecules, values of d4 found directly from Eq. (40), 
rather than an approximate formula, are given in Table 5. The figures in that table show 
that when R becomes greater than 50 a.u. it is not sufficiently accurate to consider C6 
alone but radiative corrections due to the o2R2d4 term begin to become significant. 
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Appendix: A Symmetry-Adapted Perturbation Theoretic Expansion of o~(w) 

Consider a molecule with Hamfltonian ~ and ground-state wavefunction ~b o and 
energy E so that 

( f -  E)~o = 0 (A1) 

I f  the system is perturbed by a time-dependent sinusoidal perturbation ~4 P cos cot where 
is independent of  t a n d ~  is the frequency then following Langhoff, Epstein, and 

Karplus [28] the first-order change in the wavefunction 41, can be written in terms of the 
spatial functions ~ ,  q; ~- in the form 

~ l ( t  ) = 1 ~ir z- le-icot 

where 

( o ~ -  E + w ) ~  = (E 1 - ~/r)~ o (A3) 

which is time-independent. 

In the case where r162 is the dipole-moment operator, and since all the functions are real, 
the frequency-dependent polarizability is given by 

o~(w) = -- (Col :W" [ t~- + t)~-) (A4) 
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In order to obtain a perturbation-theoretic expansion of  a it is convenient to define it by 
means of  an equation similar to that which determines the static polarizability in the 
time-independent case. Such an equation is 

(og'--  E)~ 2 = -o@0 + (E 1 - ~ / / ' ) ( ~  + ~1-) (A5) 

If  o~ is written as the sum of  a zero-order Hamiltonian ]t~ and a correcting internal per- 
turbation Xq # = $ f f -  ~ o  then Eqs. (A1)-(A5) can be used to obtain o~(CO) as a series in X. 

Suppose, however, thatNis an idempotent symmetry operator which commutes with 
and ~g# and which is such that (r = ~o; fr ~ = ~1; (q ~2 = ~2 but that (r does not 
commute with fifo and "/2 separately. Then the equations can be solved by symmetry- 
adapted perturbation theory. If, in particular, we extend Hirschfelder's method [291 we 
introduce the equations 

[fifo - E o  + ~ (  ~g'- E +  Eo)] ~ = 0 (A6) 

[9fo - Eo - w + ~ ( ~r f f  + E o)] X +- = (El - r )q~ (A7) 

[ ]go  - Eo  + fr ( ~ r  + Eo)]  ~ = ar  + (E 1 - ~F')(X + + X--) (A8)  

Clearly in terms of  the solutions to (A6)-(A8) the solution to (A1)-(A5) will be given by 
~J0 = ~ ,  l]/1 = (~X -+, ~J2 --= ' ~  a n d E  =/~, a = 6. Thus Eqs. (A6)-(A8) can be used to obtain 
a symmetry adapted perturbation theoretic expansion of  a(CO). 

We now apply this theory to the Frost model and we take N to be the antisymmetrizer and 
j/t~ the sum of harmonic oscillator Hamiltonians as described in Ref. [ 12]. The relevant 
equations we require from (A6)-(A8) to obtain the leading term in the expansion of  a(co), 
i.e. the term independent of  X, are 

( ~ o  - E o ) 0 o  = 0 (A9)  

(3(~0 -- E0 + CO)X~ = (El -- "fff')qS0 (A10) 

( ~ f o  - Eo)~o  = - ~ + (El  - -  ' ~ # ) ( X ;  + X0-) ( A l l )  

For the 
we find 

i + 
X S -  COo _+ CO X0o 

and so 

= ~b0 X2 1 
COo + ~  ~o + - -  

O~ 

whence 

Frost model, taking r as a single Gaussian centred at the origin (for simplicity), 
when ~ = - x ,  i.e. the field is in the x-direction, 

(A12) 

1 r  (A13) 
coo - oo 

1 
- co~ - co2 (A14) 

The leading term for the total polarizability is just a sum of  such expressions yielding 
Eq. (6). 
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